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LElTER TO THE EDITOR 

Topological properties of linked disclinations in 
anisotropic liquids* 

A Holz 
Fachrichtung Thearetische Physik, Universitit des Saarlandes, 6600 Saarbriicken, 
Federal Republic of Germany 

Received 4 June 1991 

Abstrad. A connection between the topological properties ofthe 0(3) -andS0(3) -u  models 
based on Hopf‘s invariant and the Wess-Zumino term, respectively, and related topological 
concepts are indicated. This is applied to the 0(3)/Z2- and the SO(3)/P,-u models, where 
Z, and P , c  SO(3) are point symmetry groups describing anisotropic liquids. I t  is shown 
that the Hopf invarianf for the nematic liquid assumes integer multiples of 4 and similar 
results hold for the other u-models. Applications to a topological field theory of 0(3)/Z,- 
and S0(3)/Pi-u models are indicated. 

The order parameter of the 0(3)-u model assumes values on the 2-sphere S2  and its 
defect configurations are usually classified by the three homotopy groups (see e.g. 
Mermin 1979 and K l h a n  1983) 

7r,(SZ)=1 7r,(S2) = B 7r3(S‘) = B (1) 

where Z is the cyclic group of ord(B) = m. 

and Rybakov 1982) 
A ’measure’ of the classes of 7r,(Sz) is given by the Hopf invariant (see e.g. Kundu 

where { n )  is a unit vector field, and A and B are suitable defined vector potential and 
magnetic induction, respectively of an U(1)-gauge theory; M is taken initially as a 
closed and simply connected 3-space, i.e. r , (M)=I .  Q can be identified with the 
Gauss linking number of disclination loops, which are the line defects of the system 
(the latter are defined by the border lines of ‘cut surfaces’ fixing the configuration of 
{n} (Kundu and Rybakov 1982, Holz 1991)). Due to 7r,(S2)=I disclinations are 
topologically unstable if they are unlinked, whereas in a knotted and linked configur- 
ation they are stable due to 7r,(S2) 3 Z. The ‘time change’ of (2) is defined by 

where E is the ‘electric’ field strength. During topology changing processes ( E .  B # 0) 
disclination lines intersect and ’magnetic’ N-poles are generated due to 7r2(S2) =Z. 
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During such processes A is a non-trivial U(1)-connection and Q is not well defined; 
however, this does not apply to the instanton number 1) from which (3) is obtained. 
For an introduction to some topological concepts of relevance in this work, see Eguchi 
et ol (1980) and Madore (1981). 

Some of the properties indicated above will be worked out (borrowing ideas 
developed by Witten (1989), and Dijkgraaf and Witten (1990)) and extended to 
0(3)/Z,- and SO(3)/Pt-u models, where Z2 and {Pj) are binary- and point-symmetry 
groups of anisotropic liquids. 

The order parameter (0(3)/B2) of the uniaxial nematic liquid assumes values in 
the projective 2-sphere P2, where n , ( P 2 ) = Z 2  and T , ~ ~ , ( P ~ ) = Z  (Whitehead 1978). It 
displays accordingly also disclinations of strength s E B + f ,  and which contain core 
singularities, requiring a modification of (2) and (3). Similar considerations apply to 
S0(3 )=P3  (projective3-sphere) and forwhich n , ( P 3 ) = Z , ,  n2(P ' )=I  and n J ( P 3 ) = Z  
(Whitehead 1978). A 'measure' of the classes of r3(PJ) is given by the Wess-Zumino 
term 

dix &P4' trace[(R'J,R)(R'a,R)(R'a,R)) 
1 rwz = ---i 

48- IM (4) 

where ePq' is the totally antisymmetric symbol p = 1,2,3, etc; R({II"),=,,~,~) E SO(3) is 
a 3 x 3 matrix and {n").=,,2,J an othonormal drei-bein field. Equation (4) can be reduced 
to (2), applying to each constituent n" and with Q ( n " ) t f B .  These results are extended 
to the S0(3)-a models. 

In the following section the topological relation between the O(3)- and S0(3)-u 
models is worked out, based on the Chern-Simons action (Eguchi el  U/ 1980). 

1 rCs = d'x .epq' trace{F,,A, -$A,A,A,) 
3 2 ~  

where 

F,,=J,A,-J,A,+[A,, A , ]=F~ ,T"  p=O,1,2,3. 

Here (T") are the generators of the Lie-algebra of SO(3) in the 3 x 3 representation; 
[T", Tb] = .eab'T', where trace(T"') = -2, a = 1,2,3, trace(T'T2T3) = -1, and trace 
(T"Tb) = 0 for a # b. TCs will be studied for the simple 'A-connections': 

A,(A)=A(J,R').R ( 6 0 )  

where A is some constant, and A = -1 is the flat connection, which for rr,( M )  = I is 
unique in the sense that it is gauge equivalent modulo gauge transformations G : A +  
G(A) = GAG'+ G dG' to the trivial connection A= 0. Here G E 9, and 9 is the group 
of continuous gauge transformations, i..e the maps M + S0(3), with no( 9) = Z. One 
easily obtains 

F,,(A)=(l +A)(J,Av -a&) ( 6 6 )  

and 

rCs(A)=&(l+lj?) jM d3xxpq'trace((a,A,)A,) 

using the identities 

A(J,A:(A)-J,A;(A)) = ~E"~'A~(A)A:(A) 

(7) 
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which are independent of A, for A # 0. Equations (6a), (7), (8) are easily extended to 
the case where A is replaced by a triple of numbers {A"}. Use of A = A(x)  implies that 
in (7) and all consecutive formulae A-dependent factors have to be moved under the 
integral symbol; more involved formulae are obtained for 

A(A(x))= A"(x)A'(~)T" 
a=, 

where also J,A"-terms do  not cancel. 
Setting 

one obtains 

where Q"- Q(n") is obtained from (2) by the replacement (A, B)+(A".",B"."). On 
the other hand, setting (dR'.R)., = E.~<Q', where Q'= 0: dx@, c = 1,2,3, are 1-forms, 
one obtains A:(-l) = -0: and 

rcs(-i) = rwr=- @'Q2Q3 N, (10) 87r2 ' I  
Here N E Z  is the winding number of A(-1) 'measuring' the classes of r3(SO(3)). 
Similarly one obtains 

Equation (11) implies that A = + ,  *l, 32 yield r c S ( A ) E 2 ,  for all N e 2 ;  rcs(0)= 
res(-$) =0, whereas for rational values of A one has T,,(A) = (q(A)/p(A))Nand needs 
N€p(A)Z for q ( A )  and p ( A )  relatively prime. For a gauge transformation G of A(A), 
(11) changes by an integer (deg(G)) independent of A. Within this scheme a 
classification of topological S 0 ( 3 ) - u  models based on A-connections is possible. 

An alternative form of Tcs(A) is obtained using the representation R({n"}.=1.2.3). 
In that case A(l)=-f&.,, dn".nbT' yields (n>- J,nb): 

A:(l)=-&kn>.n' (12a) 

(126) 

F;,(1)=2(J,,naX J,n').n' (13) 

b F : u (  1) = 2Eabcn.F  ' n:". 

I t  is now a simple matter to derive the identity 

inserting ny = eYbrnb x nc into (126). Comparison of (13) with the' 'electromagnetic' 
representation of the 0(3)-u model (Kundu and Rybakov 1982) shows that 

F ~ , ( l ) = F , , ( n " ) - F $  2A:( 1) = A,(n") - A:" (14) 

being consistent with (9). 
Next the individual terms in (7') are evaluated. This yields 

A " . ~ ~ B " . "  =4~"(np,. nb)(n\. n')(n:;n") 
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where (a,  b, c )  form a cyclic arrangement of (1,2,3). Under the same condition 
0" = -dnb.n' implies A".".B"."= -40" n e b  n 0'. From this follows that each con- 
stituent of the drei-bein field {."} gives the same contribution to Tcs. yielding for a test 

where vol(SO(3))=8.rr2, and which is identical to ( 1 1 ) .  From (7') and (11) follows 

and implies that N must be divisible by 2 in order that the drei-bein field (n11)n=,,2,3 
is smooth. Naturally, this is related to .rr,(S0(3)) = Z2, and that the respective disclina- 
tions display core singularities. 

The present result is consistent with the property that a smooth S0(3)-bundle may 
trivially extend to a SU(2)-hundle. Due to SU(2)=S3, and P'=S3/Z2 we have 
vol(SU(2)) = 2 vol(SO(3)). and in a normalization where arbitrary integers K E Z are 
allowed for r;: we have r::('I = rsu(2)/2 cs = ~ / 2 :  

Q&)= K/4. (16) 

Here the S0(3)-index is a reminder that the normalization has been changed. This 
implies that only those S0(3)-bundles, where K is divisible by four extend trivially to 
SU(2)-bundles, and agrees with the result derived by Dijkgraaf and Witten (1990). 

In the presence of singularities M cannot be considered anymore as a closed and 
simply connected 3-space and therefore rcs(A) has to be supplemented by an additional 
term. From AL(1) one obtains for the additional field strength tensor on the cylinder 
M x R  

(v, P )  =O, 1,2,3 h b SFL,(l)=f&,b,(n . + - n  ,",J.n' 

SE:(I) = -+Bab,(n b,O,. nc  - nb,co.  n ' )  

SBg(1) = E'py&.bc(n .pv - n ,q,,).nc 

implying 

b b 

where n',,,, = (a2/afJx,)nb, etc (Holz 1991). One easily obtains 

where 

is the Gauss linking number and @E Z; furthermore sp E Z and Cg represent strength 
and oriented loop of the ath singular disclination, respectively. 

Use of the instanton number and its time derivative imply 
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Going over to the local rest frame one shows that SE". SB" # 0 only during processes, 
where singular disclinations intersect, and the same applies to E".  B" # 0. Alternatively, 
it is easy to show using (13), that En.B" e 0  holds for all smooth fields. 

In the following section the topological properties of the 0(3)/Z2, and S0(3)/P; - r 
models are worked out. In the nematic liquid (0(3)/Z,-u model) S2 is replaced by 
P2. Hopf links may then be formed by disclinations of strengths (n,  m) E Z and Z + f .  
A simple guess is that the Hopf invariant Q' of the nematic liquid is given by (20) 
with (n, m )  E fZ  implying 19'1 3 a for non-trivial links. 

Suppose a Hopf link is formed by two disclinations of strengths n, m E Z + f .  Upon 
encircling each disclination twice each of the fields A,., F,., assumes its original value. 
We may therefore take four copies of the space M, provided with the cut surfaces En 
and E,,, and glue them together along the oriented cut surfaces in such a manner that 
the A,, F,,-fields change smoothly across the cut surfaces and are single valued in 
the space M* = IIt=, M(i'uXy)u E:). This idea has been introduced by Dijkgraaf and 
Witten (1990) in a similar context. In M* (branched over the Hopf-link in M )  the 
strength of each disclination is doubled, i.e. (n ,  m) + (2% 2m) and we obtain 

d'x A . B  = 4nm@(C,, C,,,). 
1 

Q* = -(8rr)2 jM. 
with Q*EZ. Alternatively one has 

d'xA.B = 4 Q  
4 1  

because each term gives the same contribution due to A.  B = ( -A)(  -B) .  Accordingly 
one obtains 

Q'=$Q* = nm@(C,, C,,,) (20) 
which is the desired result, and extends additively in the presence of many links due 
to , r , (P2)  = Z being Abelian. Similarly for time-dependent processes one obtains 

d'xE.B. 
dQ' 1 

Consider next a biaxial liquid crystal described by a S0(3) /D2-r  model, where 
D, is the dihedral group, consisting of the identity and the three identifications 

R(nl ,  n2, n')  2 R(n' ,  -nz ,  - n 3 )  2 R(-n', -nZ,  n ' )  2 R(-nl, n2, - n 3 )  (21) 
which are compatible with the orientability of S0(3)/D2. Due to vol(S0(3)/D2)= 
vol(SO(3))/4 it is more convenient to normalize rCs with respect to the quotient space, 
i.e. we use 

where N E Z  is the winding number related to ,r,(S0(3)/D2). Similarly as described 
earlier we obtain alternatively 

yielding 
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because each constituent of {ns] .=, .2 .3  gives the same contribution to (22). Accordingly 
each field is smoothed out in the product space M* introduced above and complies 
with Q*" =4Qg2= K/2, where (15) has been used and being consistent with (23). 

For a decomposition of the number K / 8  in (23) as a product of disclination 
strengths one writes (16) in the form 

Qgoc31= k. h (k h ) E i Z  (24) 

where k .  h is the winding number with respect to S'. With respect to that normalization 
one obtains in S0(3)/D2-bundles disclinations of strength p E &  and IQ;oc31iD,I a& 
for non-trivial Hopf-links. More generally one obtains 

Qgoc31/0, = 1 PiqiWC;, C;) = X/16 N E Z ,  ( P , , q i ) E a z  (250) 
i , j  

where T,,(A) has been defined by (9). Observe that in M *  there are no singular 
disclinations, i.e. 81-:i131iD2= 0. This implies, that the topological theory in the multiply 
connected space M is of a qualitative different type as in the space M*. 

The present theory may also be extended to 3-spaces M with v , ( M )  # I,  as, for 
example, the 3-torus T3.  In that case the space (Witten 1989) 

R ( M ) ~ H o m ( v , ( M ) ~ S 0 ( 3 ) ) / S 0 ( 3 )  

modulo conjugation in S0(3),  being isomorphic to the space of flat connections modulo 
gauge equivalence classes is non-trivial. However, the non-trivial flat connections will 
also have the representation (6a) for A = -1, but differ in the glueings of the R-matrices 
yielding non-trivial holonomies R'(Zv)R(O) E SO(3) along non-contractible loops (Holz 
1991). 

As an application of this formalism consider the computation of expection values 
of the holonomy operators traceR P exp{-fc A, dx') as a functional integral over 
equivalence classes of connections in the form 

(WR(A))=(WR,(C~)... W R " ( G ) )  (26) 

with respect to TCs (Witten 1989). In the following a modified version of (26) is 
presented for the 0(3)/Z, - U, and S0(3)/Pi - U models. 

For the 0 ( 3 ) / Z ,  - U model functional integration in (26) will be defined with respect 
to M *  introduced above. In that space one may use 

where k is a parameter and { nj E Z} j= , ,  . , , , are representation numbers of U( 1 )  (Witten 
1989). and Q* is defined by (19). The factor 1/Z2 in front of Q* takes account of the 
change-over from M to M'. Functional integration in (27) leads to the same result 
as for the 0(3) -u  model (Polyakov 1988), if k is replaced by k/22 in that formulae, i.e. 
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Due to Q*EE, k in (27) must be divisible by 4 in order that the measure in (27) is 
gauge invariant. Observe that for kE4H the first exponential in (27) can be replaced 
by 1 and where according to (14), A,=-n',,.n2 can be used. Suitable boundary 
conditions at infinity guarantee Q* E Z, and functional integration DA can be replaced 
by DO1 DO2 over S2 x S2,  supplemented by the constraint nl.  n2 = 0, and a gauge fixing, 
say V.A=O.  Because now (W(L'))z2 is independent of k for kE4Z, (27') may be 
caused by A-fields and their measure, used in functional integration, which do ndt 
correspond to the representation (14), necessary for the model to be interpreted as a 
u-model. Because (27) is also defined for kEW, a possibility is that 4/k in (27') has 
to be replaced by a periodic function in k/4, e.g. tan[ ~ / 4 (  1 + k)]. It can be expected 
that computation of ( W ( L ) ) ,  for the original space yields more interesting results. 

-- 

For the S0(3)-u model one may use a modified definition of (26) 

xf({AY(-1)}) n tracePexp 
j = 1  

where the factor 1/22 in front of Qg&31 follows from (24). The functional f({A-(-l)}) 
represents the constraints (8). They may be taken account of by Lagrange multipliers 
and Fadeev-Popop ghosts. Note that together with (8) 

Q$o0(31 f 1 Q%316 Z. 
( I = I  

Accordingly k must he divisible by 4, for the measure in (28) to be gauge invariant. 
This agrees with the result obtained by Dijkgraaf and Witten (1990). 

Observe that (28) may also be written in the form 

(28') 

( W ( h ) ) , , = j  D S ~ X ~ ( T ( ~ + ~ A ) A ' Q ~ ~ ( ~ , )  i2nk 
j = l  

where 
A" (-1) = 6" d@ + sin 0 d6 '  - (1 -cos @ ) E " ~ '  d6'6 '  

and DS  represents functional integration pver the 3-sphere, i.e., locally DS  & 

2(1 -cos 0) d@ dO(6),  @ E  [ 0 , 2 ~ ]  and dR(O) is the area element of the 2-sphere 
along the unit vector 6. Note that vol(S3) = 1 6 ~ '  in this normalization, and Q:o,, ,~ Z. 
Thefirstexponentialin(28')assumestbevalue 1 forA=Oand theset A = { - $ , $ ,  *1,32} 
of A-values. For all other A-values one must use 

Observe, however, that computation of (28') for A E R  and analytic continuation to 
A E A may lead to a different result from that obtained via the method explained above 
(see similar comment below (27)). For A = -1 the holonomy operator is trivial, i.e. 
Pexp(-j: A(-l))=R'(Z).R(l)  and therefore ( W ( L ) ) r , - l  = ( W ( L ) ) , , .  

As a normalization of (28') one may set ( W ( L ) ) , ,  = 1. Due to 

( w ( ~ ) ) ~ , ~ = ( w ( - ~ ) ) ~ , - ~  A=0,1,32 and A = f  forkE8Z (29) 
where L + - L  implies { C j + - C j ) j = , , . , . , n ,  and A # O ,  -1  are non-flat connections. The 
role played by A in (28') is remotely reminiscent of @-statistics in anyon physics. 
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In the computation of (W(I,))".& forG-S0(3)/D, the factor 1/2* in (28) and (28') 
is replaced by 1/42 as follows from ( E a ) ,  and k must be divisible by 42. For ord(P,)> 4 
the situation is 'slightly more involved. For the octahedral group 0 of ord(0) = 24, 
there exist two-, three- and four-fold axes of symmetry. Here one has to replace in 
( 2 5 )  D 2 + 0 ,  use in (25n)  

in such a fashion that Q~ol , , /o=K/96,  X E Z ,  and replace the factor 8 in ( 2 5 6 )  by 
ord(Z,xO) =48. This implies that in (28) one has to replace Qtobl,, by Q&,,o and 
in (28') Q h S ,  by 

In addition the factor 1/2* in (28) and (28') has to be replaced by 1/96. This extends 
to the icosahedral group 1 of ord(1) = 60, where the characteristic number 48 of 0 is 
replaced by 120. Due to the presence of a 5-fold axis of symmetry in I, we have to 
use in ( 2 5 ~ 1 ,  

1 1 
(2:2 2*3 2*4 2 * 5  (!A, qoc -z, -z, -z, -z 

in such a fashion that Q;o,,,/,=K/120 results, " E B .  
Note that the present theory may be extended to the groups G=SO(N)/P , (N) ,  

where N a 4 ,  P , ( N ) c S O ( N ) ,  using R ( { n " } . = , ,  .N is an 
orthonormal N-tuple, and n3(SO(N))=Z+Z,  Z for N = 4  and N 3 5 ,  respectively 
(Whitehead 1978). Accordingly for P, = I, ( W ( L ) ) , ,  depends on three parameters k, 
N and A, and in a more general approach A may be replaced by ( A " ( x ) }  as indicated 
below (8). Accordingly one may conjecture that 

, , . , )ESO(N)  and { n o } . = , ,  

\ DMWL)),{,,,I - (WL)) (30) 

holds, where DA is a functional integration over A-connections. Observe that integration 
over DS  and DA in (30) implies six degrees of freedom per space point, which is the 
same number as used in (26) due to A,-0 (Witten 1989). 

In conclusion the close topological relation between the 0(3)-u and S 0 ( 3 ) - u  models 
derived may prove useful for the study of a semi-classical approximation to the 
Heisenberg antiferromagnets, which for spin s +  cx and s +$ may be described by the 
0(3)-u and S0(3)-u models as speculated recently (Holz 1990). Evaluation of expecta- 
tion values of holonomy operators of the u-models discussed here is faced with certain 
shortcomings, because topology changing processes imply the formation of singularities 
due to ,r2(S2),  ,r2( P') = Z, leading to non-trivial U( 1)-connections of the drei-bein's 
constituent fields. An extension of the theory taking account of 'magnetic' N-pole 
singularities is of interest in connection with high-T, superconducitvity (Holz and 
Gong 1988) and is in progress. 
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